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Abstract

The formulation begins with the basic equations of thermoelasticity in curvilinear circular conical coordinates. A

method based on a hybrid Laplace transformation and finite difference method is developed to obtain the two-

dimensional axisymmetric quasi-static coupled thermoelastic problems of laminated circular conical shells. It was

shown that the solutions are rapidly convergent. Solutions for the temperature, displacement and thermal stress dis-

tributions in both transient and steady state are obtained. The present method can obtain stable solutions at a specific

time; thus it is a powerful and efficient method to solve the coupled transient thermoelastic problems of a circular

multilayered conical shell.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Truncated circular multilayered conical shells are used in various engineering applications such as
hoppers, vessel heads, components of missiles and spacecrafts, and other civil, mechanical and aerospace

engineering structures. Since the laminated circular conical structures are widely used in contemporary

industries, we must take care the thermoelasticity problems. The literature on the thermoelastic problems of

laminated circular conical shells is scarce. This is mainly due to the inherent complexity of the basic

equations in curvilinear circular conical coordinates, which is a system of nonlinear partial differential

equations.

Exact methods of solution are available in the literature for axisymmetric bending of conical shells as

reported in many textbooks, for examples, Timoshenko and Woinowsky-Krieger (1959) and Fl€ugge (1960).
The exact solutions are based on Bessel functions, which are presented in terms of Kelvin�s or Thomson�s
functions. However Kelvin�s functions oscillate from positive to negative values with amplitudes of oscil-

lation that diverge exponentially. Jianpong and Harik (1990) presented an iterative finite difference method
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to determine the stresses and displacements of bending of axisymmetric conical shells. The method can be

applied to short and long conical shells having simply supported, clamped, or free edges and can easily be

extended to tapered conical shells and other types of axisymmetric shells.

Based on a thick shell theory, Lu et al. (1995) discussed the stress distribution of thick laminated conical
tubes under general loading. The effect of transverse shear is taken into account by a first-order theory.

Governing equations are solved by a semi-analytical method that is a combination of Fourier series

expansion, finite difference scheme and Riccati transfer matrix method. The method can be applied to the

analysis of any axisymmetric laminated tube or shell that may approximately be divided into a series of

conical shell segments. The expressions of determining the stresses, strains and displacements of a truncated

or complete thin conical shell with constant thickness and axisymmetric load distributed or concentrated

along the meridian was presented by Tavares (1996). These expressions were obtained by construction of

Green�s function for the homogeneous differential equation based on the bending theory. It is shown that a
complete cone with lateral load can be obtained as a particular case and in a second step a cone with load at

the vertex. The solution for an axisymmetric load distributed along the meridian was obtained using

superposition.

An asymptotic theory for thermoelastic analysis of doubly curved laminated shells is formulated by Wu

et al. (1996), which based on the framework of three-dimensional elasticity. The essential feature of the

theory is that an accurate elasticity solution can be determined hierarchically by solving the classical

laminated shell theory equations in a consistent way without treating the layers individually. Based on the

equations of three-dimensional elasticity, an asymptotic theory for the analysis of laminated circular
conical shells was presented by Wu and Hung (1999). By means of proper asymptotic expansion, they

obtained the recursive sets of governing equations for the bending of a laminated circular conical shell. The

differential quadrature method is used to solve the governing equations. The numerical solutions asymp-

totically approach to the three-dimensional solution. Furthermore, based on the equations of three-

dimensional elasticity in curvilinear circular conical coordinates, a refined asymptotic theory for the static

analysis of laminated circular conical shells was presented by Wu et al. (2002). Taking into account of the

effect of transverse shear deformations, they obtained the recursive sets of governing equations leading to

the ones of first-order shear deformation theory. The differential quadrature method is used to determine
the asymptotic solutions for various orders. The solutions applied to laminated shells revealed that both the

differential quadrature method and the asymptotic solution are rapidly convergent.

Based on the governing equations of three-dimensional elasticity, an asymptotic theory was presented by

Wu and Chiu (2001) for the thermoelastic buckling analysis of laminated composite conical shells subjected

to a uniform temperature change. The perturbation method is used to determine the critical thermal loads.

Performing a straightforward derivation, the asymptotic formulation leads to recursive sets of governing

equations for various orders. The critical thermal loads of simply supported, cross-ply conical shells are

studied to demonstrate the performance of the asymptotic theory. The buckling of an orthotropic com-
posite truncated conical shell with continuously varying thickness subjected to a time dependent external

pressure was discussed by Sofiyev (2003). Using the Galerkin method, the governing equations have been

reduced to time dependent differential equation with variable coefficients. Finally, applying the Ritz

method, the critical static and dynamic loads, the corresponding wave numbers and the dynamic factor

have been found analytically. It was observed that the critical parameters and static critical load have

appreciable effects on the critical parameters of the problem in the heating.

Jane and Lee (1999) considered the thermoelasticity of multilayered cylinders subjected to known

temperatures at traction-free boundaries by using the Laplace transform and the finite difference method.
The computational procedures can solve the generalized thermoelasticity problem for a multilayered

composite cylinder with non-homogeneous materials.

However, there are fewer research works about coupled thermoelastic problems of the laminated circular

conical shells, due to the difficulties in theoretical analysis and complexity of mathematics. The present
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study deals with the two-dimensional quasi-static coupled thermoelastic problems of laminated circular

conical shells composed of different multilayered materials having axis symmetry. The laminated circular

conical shell is characterized by trace free, and absence of body forces and internal heat sources. Derivatives

are approximated by central differences resulting in an algebraic representation of the partial differential
equation. By taking the Laplace transform with respect to time, the general solutions in the transform

domain are first obtained. The final solutions in the real domain can be obtained by inverting the Laplace

transform.
2. Formulation

Consider a laminated circular conical shell composed of multiple layers with different materials. A set of
the orthogonal curvilinear coordinates ðg; h; fÞ is located on the middle surface as shown in Fig. 1, in which

g is the meridional direction, h is the circumferential direction, and f is the normal direction. Let R1 and R2

be the radii of the cone at the small and large edges, respectively, a be the semi-vertex angle of the cone and

L be cone length along the generator. The inner and outer temperatures are assumed to be f1 and f2,
respectively. Temperatures at both ends are assumed to be f3 and f4, respectively.

The transient heat conduction equation for the kth layer of the conical shell can be written as
kg
o2H
og2

þ kg
sin a

R1 þ g sin aþ f cos a
oH
og

þ kf
o2H

of2
þ kf

cos a
R1 þ g sin aþ f cos a

oH
of

¼ qCv
oH
os

þH0bg

o

og
oUg

os

� �
þH0bh

sin a
R1 þ g sin aþ f cos a

oUg

os
þH0bh

cos a
R1 þ g sin aþ f cos a

� oUf

os
þH0bf

o

of
oUf

os

� �
ð1Þ
in which H ¼ H�H0, and
bg ¼ ð1=AÞ½Egð1� mhfmfhÞag þ Ehðmgh þ mfhmgfÞah þ Efðmgf þ mghmhfÞaf�

bh ¼ ð1=AÞ½Ehðmgh þ mfhmgfÞag þ Ehð1� mgfmfgÞah þ Efðmhf þ mhgmgfÞaf�
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Fig. 1. Physical model and system coordinates for the circular conical shell.
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bf ¼ ð1=AÞ½Efðmgf þ mghmhfÞag þ Efðmhf þ mhgmgfÞah þ Efð1� mghmhgÞaf�

A ¼ 1� mghmhg � mhfmfh � mfgmgf � 2mhgmfhmgf
where H is the dimensional temperature; H0 is the referential temperature; kg and kf are the thermal

conductivities; s is the dimensional time; q is the density; Cv is the specific heat; mgf, mgh and mhf are Poisson�s
ratio; ag, ah and af are the linear thermal expansion coefficients, Eg, Eh and Ef are Young�s modulus, Ug, Uh

and Uf are dimensional displacement components along g-, h- and f-directions, respectively.
If the body forces are absent, the equation of equilibrium for a circular conical shell along the g-direction

can be written as
Egð1� mhfmfhÞ
A

o2Ug

og2
þ Egð1� mhfmfhÞ

A
sin a

R1 þ g sin aþ f cos a
oUg

og
� Ehð1� mgfmgfÞ

A
sin2 a

ðR1 þ g sin aþ f cos aÞ2

� Ug þ Ggf
o2Ug

of2
þ Ggf

cos a
R1 þ g sin aþ f cos a

oUg

of
þ Ggf

�
þ Ef

A
ðmgf þ mghmhfÞ

�
o2Uf

ogof

þ Ef

A
ðmgf

�
þ mghmhfÞ �

Ef

A
ðmhf þ mhgmgfÞ

�
sin a

R1 þ g sin aþ f cos a
oUf

of

þ Ggf

�
þ Ehðmgh þ mfhmgfÞ

A

�
cos a

R1 þ g sin aþ f cos a
oUf

og
� Ehð1� mgfmfgÞ

A
sin a cos a

ðR1 þ g sin aþ f cos aÞ2
Uf

� bg

oH
og

� ðbg � bhÞ
sin a

R1 þ g sin aþ f cos a
H ¼ 0 ð2Þ
where Ggf is the shear modulus. If the body forces are absent, the equation of equilibrium for a circular

conical shell along the f-direction can be written as
Efð1� mghmhgÞ
A

o2Uf

of2
þ Efð1� mghmhgÞ

A
cos a

R1 þ g sin aþ f cos a
oUf

of
� Ehð1� mgfmgfÞ

A
cos2 a

ðR1 þ g sin aþ f cos aÞ2

� Uf þ Ggf
o2Uf

og2
þ Ggf

sin a
R1 þ g sin aþ f cos a

oUf

og
þ Ggf

�
þ Ef

A
ðmgf þ mghmhfÞ

�
o2Ug

ogof

þ Ef

A
ðmgf

�
þ mghmhfÞ �

Eh

A
ðmgh þ mfhmgfÞ

�
cos a

R1 þ g sin aþ f cos a
oUg

og
þ Ggf

�
þ Efðmhf þ mhfmgfÞ

A

�

� sin a
R1 þ g sin aþ f cos a

oUg

of
� Ehð1� mgfmfgÞ

A
sin a cos a

ðR1 þ g sin aþ f cos aÞ2
Ug

� bf

oH
of

� ðbf � bhÞ
cos a

R1 þ g sin aþ f cos a
H ¼ 0 ð3Þ
The stress–displacement relations for the kth layer are
r�
gk ¼

1

A
Egð1

�
� mhfmfhÞ

oUg

og
þ Ehðmgh þ mfhmgfÞ

sin a
R1 þ g sin aþ f cos a

Ug

þ Ehðmgh þ mfhmgfÞ
cos a

R1 þ g sin aþ f cos a
Uf þ Efðmgf þ mghmhfÞ

oUf
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�
� bgH ð4Þ

r�
hk ¼

1

A
Ehðmgh

�
þ mfhmgfÞ

oUg

og
þ Ehð1� mgfmfgÞ

sin a
R1 þ g sin aþ f cos a

Ug

þ Ehð1� mgfmfgÞ
cos a

R1 þ g sin aþ f cos a
Uf þ Efðmhf þ mhgmgfÞ

oUf

of

�
� bhH ð5Þ
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r�
fk ¼

1

A
Efðmgf

�
þ mghmhfÞ

oUg

og
þ Efðmhf þ mhgmgfÞ

sin a
R1 þ g sin aþ f cos a

Ug

þ Efðmhf þ mhgmgfÞ
cos a

R1 þ g sin aþ f cos a
Uf þ Efð1� mghmhgÞ

oUf

of

�
� bfH ð6Þ

s�gfk ¼ Ggf
oUf

og

�
þ oUg

of

�
ð7Þ
where r�
gk, r

�
hk and r�

fk are the dimensional normal stresses for the kth layer; s�gfk is the dimensional shear

stress for the kth layer.

Let the boundary surface of the laminated circular conical shells be subjected to constant boundary
temperatures and traction free, the boundary conditions are
r�
gðg; f; sÞ ¼ 0; H1 ¼ H0 þ f1 at g ¼ R1= sin a

r�
gðg; f; sÞ ¼ 0; H2 ¼ H0 þ f2 at g ¼ Lþ R1= sin a

r�
fðg; f; sÞ ¼ 0; H3 ¼ H0 þ f3 at f ¼ R1= cos a

r�
fðg; f; sÞ ¼ 0; H4 ¼ H0 þ f4 at f ¼ ðR2 � R1Þ= cos a
The initial conditions are U ¼ 0, and H ¼ 0 at s ¼ 0.

At the interface between two adjacent layers, the interface conditions are
Ukðg; sÞ ¼ Ukþ1ðg; sÞ g ¼ ðR1= sin aÞkþ1

r�
gkðg; sÞ ¼ r�

gkþ1ðg; sÞ g ¼ ðR1= sin aÞkþ1

qkðg; sÞ ¼ qkþ1ðg; sÞ g ¼ ðR1= sin aÞkþ1

Hkðg; sÞ ¼ Hkþ1ðg; sÞ g ¼ ðR1= sin aÞkþ1

k ¼ 2; 3; . . . ;m� 1 layer
where qk is the heat flux per unit area per unit time for the kth layer.

The non-dimensional variables for the axisymmetric circular multilayered conical shells are defined as

follows:
x ¼ gðsin a=R1Þ; z ¼ fðcos a=R1Þ

T ¼ ðH�H0Þ=H0 ¼ H=H0; ux ¼ Ug

bg

qCv

� �
k

R1

sin a

� ��

uz ¼ Uf

bg

qCv

� �
k

R1

cos a

� ��
; t ¼ s

kg
qCv

� �
1

R1

sin a

� �2
,

a1k ¼
kg
qCv

� �
k

kg
qCv

� �
1

�
; a2k ¼

kf
qCv

� �
k

kg
qCv

� �
1

�

a3k ¼
bh

qCv

� �
k

bg

qCv

� �
k

�
; a4k ¼

bf

qCv

� �
k

bg

qCv

� �
k

�

b1k ¼ Ehð1� mgfmfgÞ=½Egð1� mhfmfhÞ�; b2k ¼ AGgf
cos a
sin a

� �2
�

½Egð1� mhfmfhÞ�

b3k ¼ Ef½ðmgf þ mghmhfÞ � ðmhf þ mhgmgfÞ�=½Egð1� mhfmfhÞ�

b4k ¼ ½Ehðmgh þ mfhmgfÞ þ AGgf�=½Egð1� mhfmfhÞ�
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b5k ¼ ½Efðmgf þ mghmhfÞ þ AGgf�=½Egð1� mhfmfhÞ�

b6k ¼ AH0bg

bg

qCv

� �
k

�
½Egð1� mhfmfhÞ�; b7k ¼ AH0ðbg � bhÞ

bg

qCv

� �
k

�
½Egð1� mhfmfhÞ�

c1k ¼ A
cos a
sin a

� �2
�

½Ehð1� mgfmfgÞGgf�; c2k ¼ A
cos a
sin a

� �2
�

½Efð1� mghmhgÞGgf�

c3k ¼
AGgf þ Efðmhf þ mhgmgfÞ

AGgf

cos a
sin a

� �2

c4k ¼ ½Efðmgf þ mghmhfÞ � Ehðmgh þ mfhmgfÞ�
cos a
sin a

� �2
�

AGgf

c5k ¼
AGgf þ Efðmgf þ mghmhfÞ

AGgf

cos a
sin a

� �2

; c6k ¼ H0bf

bg

qCv

� �
k

cos a
sin a

� �2
�

Ggf

c7k ¼ H0ðbf � bhÞ
bg

qCv

� �
k

cos a
sin a

� �2
�

Ggf; 1Qk ¼ Egð1� mhfmfhÞ Abg1

bg

qCv

� �
k

H0

� ��

2Qk ¼ Ehðmgh þ mfhmgfÞ Abg1

bg

qCv

� �
k

H0

� ��

3Qk ¼ Efðmgf þ mghmhfÞ Abg1

bg

qCv

� �
k

H0

� ��
; 4Qk ¼ bgk=bg1

1Rk ¼ Ehðmgh þ mfhmgfÞ Abh1

bg

qCv

� �
k

H0

� ��
; 2Rk ¼ Ehð1� mgfmfgÞ Abh1

bg

qCv

� �
k

H0

� ��

3Rk ¼ Efðmhf þ mhgmgfÞ Abh1

bg

qCv

� �
k

H0

� ��
; 4Rk ¼ bhk=bh1

1Pk ¼ Efðmgf þ mghmhfÞ Abf1

bg

qCv

� �
k

H0

� ��
; 2Pk ¼ Efðmhf þ mhgmgfÞ Abf1

bg

qCv

� �
k

H0

� ��

3Pk ¼ Efð1� mghmhgÞ Abf1

bg

qCv

� �
k

H0

� ��
; 4Pk ¼ bfk=bf1

sxz ¼ s�gf=Ggf1; rzk ¼ r�
fk=ðbf1H0Þ; rhk ¼ r�

hk=ðbh1H0Þ; rxk ¼ r�
gk=ðbg1H0Þ

1Sk ¼
Ggf

Ggf1

� �
cos a
sin a

� � bg

qCv

� �
k

�
; 2Sk ¼

Ggf

Ggf1

� �
sin a
cos a

� �
bg

qCv

� �
k

�

where x is the non-dimensional meridional direction; z is the non-dimensional normal direction; T is the

non-dimensional temperature; ux and uz are the non-dimensional displacement components; rxk, rhk and rzk

are the non-dimensional normal stresses for the kth layer; sxz is the non-dimensional shear stress for the kth
layer.
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3. Computational procedures

By substituting the non-dimensional quantities into the governing equations (1)–(3), and stress–dis-

placement relations (4)–(7), we arrive at the following non-dimensional equations:
a1k
o2

ox2

�
þ a1k
1þ xþ z

o

ox
þ a2k

o2

oz2
þ a2k
1þ xþ z

o

oz

	
T

¼ oT
ot

þ o

ox
oux
ot

� �
þ a3k
1þ xþ z

oux
ot

� �
þ a3k
1þ xþ z

ouz
ot

� �
þ a4k

o

oz
ouz
ot

� �
ð8Þ

o2ux
ox2

þ 1

1þ xþ z
oux
ox

� b1k
ð1þ xþ zÞ2

ux þ b2k
o2ux
oz2

þ b2k
1þ xþ z

oux
oz

þ b3k
1þ xþ z

ouz
oz

� b1k
ð1þ xþ zÞ2

uz

þ b4k
1þ xþ z

ouz
ox

þ b5k
o2uz
oxoz

� b6k
oT
ox

� b7k
1þ xþ z

T ¼ 0 ð9Þ

o2uz
ox2

þ 1

1þ xþ z
ouz
ox

� c1k
ð1þ xþ zÞ2

uz þ c2k
o2uz
oz2

þ c2k
1þ xþ z

ouz
oz

þ c3k
1þ xþ z

oux
oz

� c1k
ð1þ xþ zÞ2

ux

þ c4k
1þ xþ z

oux
ox

þ c5k
o2ux
oxoz

� c6k
oT
oz

� c7k
1þ xþ z

T ¼ 0 ð10Þ

rxk ¼ 1Qk
oux
ox

þ 2Qk
ux

1þ xþ z
þ 2Qk

uz
1þ xþ z

þ 3Qk
ouz
oz

� 4QkT ð11Þ

rhk ¼ 1Rk
oux
ox

þ 2Rk
ux

1þ xþ z
þ 2Rk

uz
1þ xþ z

þ 3Rk
ouz
oz

� 4RkT ð12Þ

rzk ¼ 1Pk
oux
ox

þ 2Pk
ux

1þ xþ z
þ 2Pk

uz
1þ xþ z

þ 3Pk
ouz
oz

� 4PkT ð13Þ

sxzk ¼ 1Sk
oux
oz

þ 2Sk
ouz
ox

ð14Þ
The non-dimensional boundary conditions can be written as
rxðx; z; tÞ ¼ 0; T1 ¼ f1=H0 at x ¼ xtop
rxðx; z; tÞ ¼ 0; T2 ¼ f2=H0 at x ¼ xbottom
rzðx; z; tÞ ¼ 0; T3 ¼ f3=H0 at z ¼ zinner
rzðx; z; tÞ ¼ 0; T4 ¼ f4=H0 at z ¼ zouter
By applying the central difference scheme in Eqs. (8)–(10), the following discretized equations are ob-

tained:
a1k
Tiþ1;j � 2Ti;j þ Ti�1;j

ðDxÞ2
þ a1k

1

1þ xi;j þ zi;j

Tiþ1;j � Ti�1;j

2Dx
þ a2k

Ti;jþ1 � 2Ti;j þ Ti;j�1

ðDzÞ2
a2k

1

1þ xi;j þ zi;j

� Ti;jþ1 � Ti;j�1

2Dz
¼ oTi;j

ot
þ

oux
ot


 �
iþ1;j

� oux
ot


 �
i�1;j

2Dx
þ a3k
1þ xi;j þ zi;j

oux
ot

� �
i;j

þ a3k
1þ xi;j þ zi;j

ouz
ot

� �
i;j

þ a4k

ouz
ot


 �
i;jþ1

� ouz
ot


 �
i;j�1

2Dz
ð15Þ
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uxiþ1;j � 2uxi;j þ uxi�1;j

ðDxÞ2
þ 1

1þ xi;j þ zi;j

uxiþ1;j � uxi�1;j

2Dx
� b1k
ð1þ xi;j þ zi;jÞ2

uxi;j

þ b2k
uxi;jþ1 � 2uxi;j þ uxi;j�1

ðDzÞ2
þ b2k
1þ xi;j þ zi;j

uxi;jþ1 � uxi;j�1

2Dz
þ b3k
1þ xi;j þ zi;j

uzi;jþ1 � uzi;j�1

2Dz

� b1k
ð1þ xi;j þ zi;jÞ2

uzi;j þ
b4k

1þ xi;j þ zi;j

uziþ1;j � uzi�1;j

2Dx
þ b5k

uziþ1;jþ1 � uziþ1;j�1 � uzi�1;jþ1 þ uzi�1;j�1

4DxDz

� b6k
Tiþ1;j � Ti�1;j

2Dx
� b7k
1þ xi;j þ zi;j

Ti;j ¼ 0 ð16Þ

uziþ1;j � 2uzi;j þ uzi�1;j

ðDxÞ2
þ 1

1þ xi;j þ zi;j

uziþ1;j � uzi�1;j

2Dx
� c1k
ð1þ xi;j þ zi;jÞ2

uzi;j

þ c2k
uzi;jþ1 � 2uzi;j þ uzi;j�1

ðDzÞ2
þ c2k
1þ xi;j þ zi;j

uzi;jþ1 � uzi;j�1

2Dz
þ c3k
1þ xi;j þ zi;j

uxi;jþ1 � uxi;j�1

2Dz

� c1k
ð1þ xi;j þ zi;jÞ2

uxi;j þ
c4k

1þ xi;j þ zi;j

uxiþ1;j � uxi�1;j

2Dx
þ c5k

uxiþ1;jþ1 � uxiþ1;j�1 � uxi�1;jþ1 þ uxi�1;j�1

4DxDz

� c6k
Ti;jþ1 � Ti;j�1

2Dz
� c7k
1þ xi;j þ zi;j

Ti;j ¼ 0 ð17Þ
By applying the central difference in the stress–displacement relations (11)–(14), the following discretized

equations are obtained:
rxk ¼ 1Qk
uxiþ1;j � uxi�1;j

2Dx
þ 2Qk

uxi;j
1þ xi;j þ zi;j

þ 2Qk
uzi;j

1þ xi;j þ zi;j
þ 3Qk

uzi;jþ1 � uzi;j�1

2Dz
� 4QkTi;j ð18Þ

rhk ¼ 1Rk
uxiþ1;j � uxi�1;j

2Dx
þ 2Rk

uxi;j
1þ xi;j þ zi;j

þ 2Rk
uzi;j

1þ xi;j þ zi;j
þ 3Rk

uzi;jþ1 � uzi;j�1

2Dz
� 4RkTi;j ð19Þ

rzk ¼ 1Pk
uxiþ1;j � uxi�1;j

2Dx
þ 2Pk

uxi;j
1þ xi;j þ zi;j

þ 2Pk
uzi;j

1þ xi;j þ zi;j
þ 3Pk

uzi;jþ1 � uzi;j�1

2Dz
� 4PkTi;j ð20Þ

sxzk ¼ 1Sk
uxi;jþ1 � uxi;j�1

2Dz
þ 2Sk

uziþ1;j � uzi�1;j

2Dx
ð21Þ
The Laplace transform of a function UðtÞ and its inverse are defined by
UðsÞ ¼ L½UðtÞ� ¼
Z 1

0

e�stUðtÞdt

UðtÞ ¼ L�1½UðsÞ� ¼ 1

2pi

Z cþi1

c�i1
estUðsÞds
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By taking the Laplace transform for Eqs. (15)–(21), the following equations are obtained:
a1k
T iþ1;j � 2T i;j þ T i�1;j

ðDxÞ2
þ a1k

1

1þ xi;j þ zi;j

T iþ1;j � T i�1;j

2Dx
þ a2k

T i;jþ1 � 2T i;j þ T i;j�1

ðDzÞ2
a2k

� 1

1þ xi;j þ zi;j

T i;jþ1 � T i;j�1

2Dz

¼ ðTi;jin þ sT i;jÞ þ
ðuxin þ s�uxÞiþ1;j � ðuxin þ s�uxÞi�1;j

2Dx
þ a3k
1þ xi;j þ zi;j

ðuxi;jin þ s�uxi;jÞ

þ a3k
1þ xi;j þ zi;j

ðuzi;jin þ s�uzi;jÞ þ a4k
ðuzin þ s�uzÞi;jþ1 � ðuzin þ s�uzÞi;j�1

2Dz
ð22Þ
�uxiþ1;j � 2�uxi;j þ �uxi�1;j

ðDxÞ2
þ 1

1þ xi;j þ zi;j

�uxiþ1;j � �uxi�1;j

2Dx
� b1k
ð1þ xi;j þ zi;jÞ2

�uxi;j

þ b2k
�uxi;jþ1 � 2�uxi;j þ �uxi;j�1

ðDzÞ2
þ b2k
1þ xi;j þ zi;j

�uxi;jþ1 � �uxi;j�1

2Dz
þ b3k
1þ xi;j þ zi;j

�uzi;jþ1 � �uzi;j�1

2Dz

� b1k
ð1þ xi;j þ zi;jÞ2

�uzi;j þ
b4k

1þ xi;j þ zi;j

�uziþ1;j � �uzi�1;j

2Dx
þ b5k

�uziþ1;jþ1 � �uziþ1;j�1 � �uzi�1;jþ1 þ �uzi�1;j�1

4DxDz

� b6k
T iþ1;j � T i�1;j

2Dx
� b7K
1þ xi;j þ zi;j

T i;j ¼ 0 ð23Þ
�uziþ1;j � 2�uzi;j þ �uzi�1;j

ðDxÞ2
þ 1

1þ xi;j þ zi;j

�uziþ1;j � �uzi�1;j

2Dx
� c1k
ð1þ xi;j þ zi;jÞ2

�uzi;j

þ c2k
�uzi;jþ1 � 2�uzi;j þ �uzi;j�1

ðDzÞ2
þ c2k
1þ xi;j þ zi;j

�uzi;jþ1 � �uzi;j�1

2Dz
þ c3k
1þ xi;j þ zi;j

�uxi;jþ1 � �uxi;j�1

2Dz

� c1k
ð1þ xi;j þ zi;jÞ2

�uxi;j þ
c4k

1þ xi;j þ zi;j

�uxiþ1;j � �uxi�1;j

2Dx
þ c5k

�uxiþ1;jþ1 � �uxiþ1;j�1 � �uxi�1;jþ1 þ �uxi�1;j�1

4DxDz

� c6k
T i;jþ1 � T i;j�1

2Dz
� c7k
1þ xi;j þ zi;j

T i;j ¼ 0 ð24Þ
�rxk ¼ 1Qk
�uxiþ1;j � �uxi�1;j

2Dx
þ 2Qk

�uxi;j
1þ xi;j þ zi;j

þ 2Qk
�uzi;j

1þ xi;j þ zi;j
þ 3Qk

�uzi;jþ1 � �uzi;j�1

2Dz
� 4QkT i;j ð25Þ
�rhk ¼ 1Rk
�uxiþ1;j � �uxi�1;j

2Dx
þ 2Rk

�uxi;j
1þ xi;j þ zi;j

þ 2Rk
�uzi;j

1þ xi;j þ zi;j
þ 3Rk

�uzi;jþ1 � �uzi;j�1

2Dz
� 4RkT i;j ð26Þ
�rzk ¼ 1Pk
�uxiþ1;j � �uxi�1;j

2Dx
þ 2Pk

�uxi;j
1þ xi;j þ zi;j

þ 2Pk
�uzi;j

1þ xi;j þ zi;j
þ 3Pk

�uzi;jþ1 � �uzi;j�1

2Dz
� 4PkT i;j ð27Þ
�sxzk ¼ 1Sk
�uxi;jþ1 � �uxi;j�1

2Dz
þ 2Sk

�uziþ1;j � �uzi�1;j

2Dx
ð28Þ
By letting the boundary surface of the laminated circular conical shells be subject to constant boundary
temperatures and traction free, after taking the Laplace transform, the boundary conditions in the

transformed domain become
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�rxðx; z; sÞ ¼ 0; T 1 ¼ �f1=H0 at x ¼ xtop
�rxðx; z; sÞ ¼ 0; T 2 ¼ �f2=H0 at x ¼ xbottom
�rzðx; z; sÞ ¼ 0; T 3 ¼ �f3=H0 at z ¼ zinner
�rzðx; z; sÞ ¼ 0; T 4 ¼ �f4=H0 at z ¼ zouter
and the interface conditions are as follows:
�ukðx; sÞ ¼ �ukþ1ðx; sÞ x ¼ ðR1= sin aÞkþ1

�rxkðx; sÞ ¼ �rxkþ1ðx; sÞ x ¼ ðR1= sin aÞkþ1

�qkðx; sÞ ¼ �qkþ1ðx; sÞ x ¼ ðR1= sin aÞkþ1

T kðx; sÞ ¼ T kþ1ðx; sÞ x ¼ ðR1= sin aÞkþ1

k ¼ 2; 3; . . . ;m� 1 layer
By using boundary conditions and interface conditions in Eqs. (22)–(24), the following equation in

matrix form is obtained:
f½M1� � s½I �gfT ijg þ s½M2�f�uzijg þ s½M3�f�uxijg ¼ 1

s
½M4� ð29Þ

½M5�fT ijg þ ½M6�f�uzijg þ ½M7�f�uxijg ¼ 0 ð30Þ

½M8�fT ijg þ ½M9�f�uzijg þ ½M10�f�uxijg ¼ 0 ð31Þ
where the matrices ½M1� to ½M10� are given in Appendix A.

By solving Eqs. (30) and (31), �uxij and �uzij can be obtained as
f�uxijg ¼ ð½M10� � ½M9�½M6��1½M7�Þ�1ð½M9�½M6��1½M5� � ½M8�ÞfT ijg ð32Þ

f�uzijg ¼ ð½M9� � ½M10�½M7��1½M6�Þ�1ð½M10�½M7��1½M5� � ½M8�ÞfT ijg ð33Þ

By substituting Eqs. (32) and (33) into Eq. (29), one has
f½M � � s½I �gfT ijg ¼ fBijg ð34Þ

in which
½M � ¼ f½I � � ½M2�ð½M9� � ½M10�½M7��1½M6�Þ�1ð½M10�½M7��1½M5� � ½M8�Þ
� ½M3�ð½M10� � ½M9�½M6��1½M7�Þ�1ð½M9�½M6��1½M5� � ½M8�Þg�1½M1�
and
fBijg ¼ f½I � � ½M2�ð½M9� � ½M10�½M7��1½M6�Þ�1ð½M10�½M7��1½M5� � ½M8�Þ

� ½M3�ð½M10� � ½M9�½M6��1½M7�Þ�1ð½M9�½M6��1½M5� � ½M8�Þg�1 1

s
½M4�
Since the (N 2 � N 2) matrix ½M � is a non-singular real matrix, matrix ½M � possesses a set of N 2 linearly
independent eigenvectors, hence matrix ½M � is diagonalizable. There exists a non-singular transition matrix

½P � such that ½P ��1½M �½P � ¼ diag½M �, that is, matrices ½M � and diag½M � are similar, where matrix diag½M � is
defined as
diag½M � ¼

k1
k2

. .
.

kN2

2
6664

3
7775 ð35Þ
in which kj ðj ¼ 1; 2; . . . ;N 2Þ is the eigenvalue of matrix ½M �.



Table 1

Geometry and material constants of a laminated circular conical shell (zouter=zinner ¼ 1:7, L ¼ 4:5, a ¼ p=6)

Layer 1 Layer 2 Layer 3

Eg ¼ Eh ¼ Ef 50E6 58E6 50E6

kg ¼ kh ¼ kf 18 22 18

ag ¼ ah ¼ af 4E)6 4E)6 4E)6
mgh ¼ mhg 0.2 0.3 0.2

mgf ¼ mfg 0.3 0.2 0.1

mfh ¼ mhf 0.15 0.15 0.15

Ggf 15E6 18E6 15E6

q 0.095 0.095 0.095

Cv 0.3 0.3 0.3

Fig. 2. Temperature distribution along z- and x-directions: (a) t ¼ 0:1, (b) t ¼ 5.

Table 2

The temperature under different times and different number of gird points of finite difference method at x ¼ 3:15, z ¼ 1:55

Girds¼ 36 ðN ¼ 6Þ Girds¼ 64 ðN ¼ 8Þ Girds¼ 100 ðN ¼ 10Þ Girds¼ 144 ðN ¼ 12Þ Girds¼ 196 ðN ¼ 14Þ
Time¼ 0.1 44.579 45.581 46.147 46.233 46.238

Time¼ 0.5 53.052 55.491 57.028 57.131 57.137

Time¼ 1.0 54.603 57.490 59.007 59.112 59.118

Time¼ 2.0 56.073 58.590 60.890 60.999 61.014

Time¼ 3.0 56.114 58.947 60.944 61.053 61.056

Time¼ 4.0 56.115 58.948 60.946 61.055 61.058

Time¼ 5.0 56.115 58.948 60.946 61.055 61.058
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By substituting Eq. (35) into (34), the following matrix equation is obtained:
fdiag½M � � s½I �gfT �
ijg ¼ fB�

ijg ð36Þ
where
fT �
ijg ¼ ½P ��1fT ijg and fB�

ijg ¼ ½P ��1fBijg
The following solutions are obtained immediately from Eq. (36):
T
�
ij ¼ B

�
ij=ðkj � sÞ ð37Þ
By substituting Eq. (37) into (32) and (33), the equations can be obtained as following:
�u�xij ¼ A
�
ij=ðkj � sÞ ð38Þ

�u�zij ¼ D
�
ij=ðkj � sÞ ð39Þ
where
f�u�xijg ¼ ½P ��1f�uxijg
(a)

(b)

Fig. 3. Displacement component uz along z- and x-directions: (a) t ¼ 0:1 (b) t ¼ 5.
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f�u�zijg ¼ ½P ��1f�uzijg
fA�
ijg ¼ ð½M10� � ½M9�½M6��1½M7�Þ�1ð½M9�½M6��1½M5� � ½M8�Þ½P ��1fBijg
fD�
ijg ¼ ð½M9� � ½M10�½M7��1½M6�Þ�1ð½M10�½M7��1½M5� � ½M8�Þ½P ��1fBijg
By taking the inverse Laplace transform on Eqs. (37)–(39), the solutions for T �
ij , u

�
xij and u�zij can be obtained.

Substituting T �
ij , u

�
xij and u�zij into the following relations, the temperature distribution Tij, the displacements

uxij and uzij can be obtained as:
fTijg ¼ ½P �fT �
ijg ð40Þ
fuxijg ¼ ½P �fu�xijg ð41Þ
fuzijg ¼ ½P �fu�zijg ð42Þ
Therefore, by substituting Tij, uzij, and uxij into Eqs. (18)–(21), the x-direction stress rx, the circumferential

stress rh, z-direction stress rz, and the shear stress sxz can all be obtained.
(a)

(b)

Fig. 4. Displacement component ux along z- and x-directions: (a) t ¼ 0:1, (b) t ¼ 5.
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4. Numerical results and discussions

In this section, some results of the temperature distribution in a laminated circular conical shell, dis-

placement and thermal stresses are calculated numerically. To illustrate the foregoing analysis, numerical
calculations for a circular multilayered conical shell under axisymmetric heating at the boundary surface

were performed. The laminated circular conical shell is composed of three different isotropic layers. The

geometry parameters and the material quantities of this laminated circular conical shell are shown in Table

1. The non-dimensional inner and outer radii of the cone at the small and large edges are assumed to be 1.0

and 1.7, respectively. The non-dimensional inner and outer temperatures are assumed to be 150 and 25,

respectively. The top and bottom non-dimensional temperatures are assumed to be 25 and 150, respectively.

The both ends are traction free. Each layer is assumed to have a different thickness hi. In this examined case,

the laminated circular conical shell composed of three layers, h1 ¼ 0:3, h2 ¼ 0:1 and h3 ¼ 0:3, and the semi-
vertex angle of the cone is a ¼ p=6.

For the convergence test of the present method, we calculate the temperature values at the point

x ¼ 3:15, z ¼ 1:55 with different number of finite difference gird points and different time as shown in Table

2. Results show that the temperature changes very small as the number of the grid point increases, say gird
(a)

(b)

Fig. 5. Stress distribution rz along z- and x-directions: (a) t ¼ 0:1, (b) t ¼ 5.
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points is 144 (N ¼ 12). From Table 2, we can see that under various number of gird points of finite dif-

ference method, the solutions are rapidly convergent. It is well known that the temperature tends to steady

as the time increases. As the time increases, for example, t ¼ 3 to 5, the temperatures vary slightly in each

layer, since the steady state is approached as the time increases. Therefore, in the present study, we chose
gird points¼ 196 (N ¼ 14) to evaluate the temperature distribution, displacement and thermal stresses in a

laminated circular conical shell for small time t ¼ 0:1, which is in transient state, and large time t ¼ 5:0,
which approaches the steady state.

Fig. 2(a) and (b) show the temperature distribution along the z- and x-directions of the laminated circular

conical shell at t ¼ 0:1 and 5, respectively. The temperature gradient varies in each layer because of the

difference in thermal conductivity coefficients. In both cases, it is observed that the temperature distribution

across each layer is generally curved at short time intervals. As the time interval becomes larger, say, t ¼ 5,

the temperature distribution changes slightly.
Fig. 3(a) and (b) show the variation of displacement in z-direction uz along the z- and x-directions for the

laminated circular conical shell at t ¼ 0:1 and 5, respectively. From these figures, the locations of the points

of maximum z-direction displacement uz along the z-direction occur at the center nearly. As the increasing
(a)

(b)

Fig. 6. Circumferential stress along z- and x-directions: (a) t ¼ 0:1, (b) t ¼ 5.
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of the time, the locations of the points of maximum displacement move to the inner lateral surface of the

laminated circular conical shells. It is noted that the displacement in z-direction has negative values, which

is due to the thermal expansion and the choice of coordinates (ux ¼ 0 at x ¼ xtop). For a large t, say, t ¼ 5,

the larger negative value of uz is obtained as would be expected. Fig. 4(a) and (b) show the x-direction
displacement varying in the z- and x-directions of the laminated circular conical shells at t ¼ 0:1 and 5,

respectively. The locations of the points of maximum x-direction displacement ux along the z-direction
occur at the center. Due to the difference between the top and bottom temperatures, the x-direction dis-

placement ux is increasing from the top end to the bottom end. It is noted that the displacement in x-
direction has negative values, which is due to the thermal expansion and the coordinates is chosen as ux ¼ 0

in the midplane.

Fig. 5(a) and (b) show the thermal stress distribution rz along the z- and x-directions at t ¼ 0:1 and t ¼ 5,

respectively. From these figures, the locations of the points of maximum stress rz occur at the inner surfaces
(at z ¼ 1). The larger the surrounding temperatures will have the greater the thermal stress rz. As time

increases to 5, the thermal stress arrives at its steady state value, which is greater than its transient state

value as shown in Fig. 5.
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Fig. 7. Circumferential stress along z- and x-directions at x ¼ 4:33: (a) t ¼ 0:1, (b) t ¼ 5.
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Fig. 6(a) and (b) show the circumferential stress rh along the z- and x-directions of the laminated circular

conical shell at t ¼ 0:5 and t ¼ 5, respectively. Due to the curve-fitting feature of the three-dimensional

pictures of the software package Surfer, it is difficult to see the discontinuity of the circumferential thermal

stress. In order to reveal the discontinuity of the thermal stress, Fig. 7(a) and (b) show the circumferential
stress rh along the z-directions at x ¼ 4:33. It is noted that the circumferential stress rh has discontinuity at

the interfaces as would be expected.

Fig. 8(a) and (b) show the stress distribution rx along the z- and x-directions of the laminated circular

conical shell at t ¼ 0:1 and t ¼ 5, respectively. The locations of the points of maximum stress rx occur at the

inner surfaces. From Figs. 5, 6 and 8, it is noted that the thermal stress distribution rz is larger than other

thermal stress components. Fig. 9(a) and (b) show that the distribution of the shear stress sxz in the lam-

inated circular conical shell at t ¼ 0:1 and t ¼ 5, respectively. The shear stress sxz is very small as compared

to other thermal stress components.
The above discussions demonstrate that the present method for the conical coordinates can obtain stable

solutions at a specific time; thus it is a powerful and efficient method for solving the coupled transient

thermoelastic problems of a circular multilayered conical shell.
(a)

(b)

Fig. 8. Stress distribution rx along z- and x-directions: (a) t ¼ 0:1, (b) t ¼ 5.



(a)

(b)

Fig. 9. Shear stress distribution sxz along z- and x-directions: (a) t ¼ 0:1, (b) t ¼ 5.
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5. Conclusions

In this paper, the thermoelastic transient response of the laminated circular conical shell has been

analyzed. The thermoelastic problem of circular conical shell composed of multilayer of different mate-

rials has also been discussed. The finite difference and the Laplace transform methods were employed to

obtain the numerical results. Application of the present method to laminated circular conical shells re-

veals that the present method is rapidly convergent, we chose gird points¼ 196 (N ¼ 14) to evaluate the

temperature distribution, displacement and thermal stresses in a laminated circular conical shell for small
time t ¼ 0:1, which is in transient state, and large time t ¼ 5:0, which approaches the steady state.

Temperature, displacement and thermal stress distributions were obtained which can be applied to design

useful structures or machines in engineering applications. There is no limit to the number of layers in

such a circular conical shell. The discontinuity of circumferential stress at the interfaces was found. It was

found that the temperature distribution, the displacement and the thermal stresses vary slightly as time

intervals increase.
Appendix A

The matrices ½M1� to ½M10� are given as follows:
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The matrix ½M1�
where
a ¼ 1

�
þ a71

5P1
4P1

��1 a31
Dz2

�
þ a41
2Dz

1

1þ xi;1 þ zi;1

�
; b ¼ � 1

�
þ a71

5P1
4P1

��1
2a11
Dx2

�
þ 2a31

Dz2

�

c ¼ 1

�
þ a71

5P1
4P1

��1 a11
Dx2

�
þ a21
2Dx

1

1þ xi;1 þ zi;1

�
; d ¼ 1

�
þ a71

5P1
4P1

��1 a11
Dx2

�
� a21
2Dx

1

1þ xi;1 þ zi;1

�

a2 ¼ 1

�
þ 5Qk

1Qk

��1 a3k
Dz2

�
þ a4k
2Dz

1

1þ x1;j þ z1;j

�
; b2 ¼ b3 ¼ � 1

�
þ 5Qk

1Qk

��1
2a1k
Dx2

�
þ 2a3k

Dz2

�

c2 ¼ 1

�
þ 5Qk

1Qk

��1 a3k
Dz2

�
� a4k
2Dz

1

1þ x1;j þ z1;j

�
; d2 ¼ 1

�
þ 5Qk

1Qk

��1 a1k
Dx2

�
þ a2k
2Dx

1

1þ x1;j þ z1;j

�

a3 ¼ 1

�
þ 5Qk

1Qk

��1 a3k
Dz2

�
þ a4k
2Dz

1

1þ xN ;j þ zN ;j

�
; c3 ¼ 1

�
þ 5Qk

1Qk

��1 a3k
Dz2

�
� a4k
2Dz

1

1þ xN ;j þ zN ;j

�

d3 ¼ 1

�
þ 5Qk

1Qk

��1 a1k
Dx2

�
� a2k
2Dx

1

1þ xN ;j þ zN ;j

�
; a4 ¼ a3k

Dz2
þ a4k
2Dz

1

1þ xi;j þ zi;j
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b4 ¼ � 2a1k
Dx2

� 2a3k
Dz2

; c4 ¼ a3k
Dz2

� a4k
2Dz

1

1þ xi;j þ zi;j
; d4 ¼ a1k

Dx2
þ a2k
2Dx

1

1þ xi;j þ zi;j

h4 ¼ a1k
Dx2

� a2k
2Dx

1

1þ xi;j þ zi;j
; a1 ¼ � 1

�
þ a7m

5Pm
4Pm

��1
2a1m
Dx2

�
þ 2a3m

Dz2

�

b1 ¼ 1

�
þ a7m

5Pm
4Pm

��1 a3m
Dz2

�
� a4m
2Dz

1

1þ xi;N þ zi;N

�

c1 ¼ 1

�
þ a7m

5Pm
4Pm

��1 a1m
Dx2

�
þ a2m
2Dx

1

1þ xi;N þ zi;N

�

d1 ¼ 1

�
þ a7m

5Pm
4Pm

��1 a1m
Dx2

�
� a2m
2Dx

1

1þ xi;N þ zi;N

�

where N is the mesh number; m is the last layer; k ¼ 2; 3; . . . ;m� 1 layer.

The matrix ½M2�
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where
e ¼ �1

1þ xi;1 þ zi;1
1

�
þ a71

5P1
4P1

��1

a61

�
� a71

3P1
4P1

�
; e2 ¼ e3 ¼ � 1

�
þ 5Qk

1Qk

��1 a7k
2Dz

�
� 1

2Dz
4Qk

1Qk

�

f 2 ¼ g3 ¼ � 1

�
þ 5Qk

1Qk

��1
1

2Dz
4Qk

1Qk

�
� a7k
2Dz

�
; g2 ¼ �1

1þ x1;j þ z1;j
1

�
þ 5Qk

1Qk

��1

a6k

�
� 3Qk

1Qk

�

f 3 ¼ �1

1þ xN ;j þ zN ;j
1

�
þ 5Qk

1Qk

��1

a6k

�
� 3Qk

1Qk

�
; e4 ¼ �a7k

2Dz
; f 4 ¼ �a6k

1þ xi;j þ zi;j
; g4 ¼ a7k

2Dz

e1 ¼ �1

1þ xi;N þ zi;N
1

�
þ a7m

5Pm
4Pm

��1

a6m

�
� a7m

3Pm
4Pm

�

The matrix ½M3�
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where
f ¼ � 1

�
þ a71

5P1
4P1

��1
1

2Dx

�
� a71
2Dx

1P1
4P1

�
; g ¼ �1

1þ xi;1 þ zi;1
1

�
þ a71

5P1
4P1

��1

a51

�
� a71

2P1
4P1

�

h ¼ � 1

�
þ a71

5P1
4P1

��1 a71
2Dx

1P1
4P1

�
� 1

2Dx

�
; i2 ¼ �1

1þ x1;j þ z1;j
1

�
þ 5Qk

4Qk

��1

a5k

�
� 2Qk

1Qk

�

i3 ¼ �1

1þ xN ;j þ zN ;j
1

�
þ 5Qk

4Qk

��1

a5k

�
� 2Qk

1Qk

�
; i4 ¼ �1

2Dx
; j4 ¼ 1

2Dx

k4 ¼ �a5k
1þ xi;j þ zi;j

; f 1 ¼ � 1

�
þ a7m

5Pm
4Pm

��1
1

2Dx

�
� a7m
2Dx

1Pm
4Pm

�

g1 ¼ �1

1þ xi;N þ zi;N
1

�
þ a7m

5Pm
4Pm

��1

a5m

�
� a7m

2Pm
4Pm

�

h1 ¼ � 1

�
þ a7m

5Pm
4Pm

��1 a7m
2Dx

1Pm
4Pm

�
� 1

2Dx

�

The column matrix ½M4�T
1 2 � � � � � � N N þ 1 N þ 2 � � � � � � 2N � � � � � � � � � � � � 3N � � � � � � � � � � � � � � � � � � � � � � � � � � � N 2

½v1 p1 � � � p1 v2 z1 0 � � � 0 z2 z1 0 � � � 0 z2 z1 0 � � � 0 z2 v3 p2 � � � p2 v4�
where
p1 ¼ � 1

�
þ a71

5P1
4P1

��1 a31
Dz2

��
� a41
2Dz

1

1þ xi;1 þ zi;1

�
f1
H0

�

v1 ¼ �1

H0

1

�
þ a71

5P1
4P1

��1 a11
Dx2

��
� a21
2Dx

1

1þ x1;1 þ z1;1

�
f4 þ

a31
Dz2

�
� a41
2Dz

1

1þ x1;1 þ z1;1

�
f1

�

v2 ¼ �1

H0

1

�
þ a71

5P1
4P1

��1 a11
Dx2

��
þ a21
2Dx

1

1þ xN ;1 þ zN ;1

�
f3 þ

a31
Dz2

�
� a41
2Dz

1

1þ xN ;1 þ zN ;1

�
f1

�

z1 ¼ 1

�
þ 5Qk

1Qk

��1 a2k
2Dx

1

1þ x1;j þ z1;j

��
� a1k
Dx2

�
f4
H0

�

z2 ¼ � 1

�
þ 5Qk

1Qk

��1 a1k
Dx2

��
þ a2k
2Dx

1

1þ xN ;j þ zN ;j

�
f3
H0

�
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p2 ¼ � 1

�
þ a7m

5Pm
4Pm

��1 a3m
Dz2

��
þ a4m
2Dz

1

1þ xi;N þ zi;N

�
f2
H0

�

v3 ¼ �1

H0

1

�
þ a7m

5Pm
4Pm

��1 a1m
Dx2

��
� a2m
2Dx

1

1þ x1;N þ z1;N

�
f4 þ

a3m
Dz2

�
þ a4m
2Dz

1

1þ x1;N þ z1;N

�
f2

�

v4 ¼ �1

H0

1

�
þ a7m

5Pm
4Pm

��1 a1m
Dx2

��
þ a2m
2Dx

1

1þ xN ;N þ zN ;N

�
f3 þ

a3m
Dz2

�
þ a4m
2Dz

1

1þ xN ;N þ zN ;N

�
f2

�

The matrix ½M5�
where
a5 ¼ �b8k
2Dx

; b5 ¼ �b9k
1þ xi;j þ zi;j

; c5 ¼ b8k
2Dx
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The matrix ½M6�
where
e5 ¼ 1

1þ xi;j þ zi;j

b4k
2Dz

; f 5 ¼ �b5k
ð1þ xi;j þ zi;jÞ2

; g5 ¼ �1

1þ xi;j þ zi;j

b4k
2Dz
h5 ¼ 1

1þ xi;j þ zi;j

b6k
2Dx

; i5 ¼ n5 ¼ b7k
4DxDz

; j5 ¼ �1

1þ xi;j þ zi;j

b6k
2Dx

; k5 ¼ m5 ¼ �b7k
4DxDz
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The matrix ½M7�
where
p5 ¼ �2

Dx2
� 2b2k

Dz2
� b1k
ð1þ xi;j þ zi;jÞ2

; q5 ¼ 1

2Dx
1

1þ xi;j þ zi;j
þ 1

Dx2
r5 ¼ b3k
2Dz

1

1þ xi;j þ zi;j
þ b2k
Dz2

; s5 ¼ �1

2Dx
1

1þ xi;j þ zi;j
þ 1

Dx2
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u5 ¼ �b3k
2Dz

1

1þ xi;j þ zi;j
þ b2k
Dz2
The matrix ½M8�
where
a6 ¼ � c8k
2Dz

; b6 ¼ �c9k
1þ xi;j þ zi;j

; c6 ¼ c8k
2Dz
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The matrix ½M9�
where
e6 ¼ c3k
2Dz

1

1þ xi;j þ zi;j
þ c2k
Dz2

; f 6 ¼ �2

Dx2
� 2c2k

Dz2
� c1k
ð1þ xi;j þ zi;jÞ2
g6 ¼ �c3k
2Dz

1

1þ xi;j þ zi;j
þ c2k
Dz2

; h6 ¼ 1

2Dx
1

1þ xi;j þ zi;j
þ 1

Dx2
j6 ¼ �1

2Dx
1

1þ xi;j þ zi;j
þ 1

Dx2



2232 K.C. Jane, Y.H. Wu / International Journal of Solids and Structures 41 (2004) 2205–2233
The matrix ½M10�
where
i6 ¼ n6 ¼ c7k
4DxDz

; k6 ¼ m6 ¼ �c7k
4DxDz

; p6 ¼ �c5k
ð1þ xi;j þ zi;jÞ2

; q6 ¼ 1

1þ xi;j þ zi;j

c6k
2Dx

r6 ¼ 1

1þ xi;j þ zi;j

c4k
2Dz

; s6 ¼ �1

1þ xi;j þ zi;j

c6k
2Dx

; u6 ¼ �1

1þ xi;j þ zi;j

c4k
2Dz
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