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Abstract

The formulation begins with the basic equations of thermoelasticity in curvilinear circular conical coordinates. A
method based on a hybrid Laplace transformation and finite difference method is developed to obtain the two-
dimensional axisymmetric quasi-static coupled thermoelastic problems of laminated circular conical shells. It was
shown that the solutions are rapidly convergent. Solutions for the temperature, displacement and thermal stress dis-
tributions in both transient and steady state are obtained. The present method can obtain stable solutions at a specific
time; thus it is a powerful and efficient method to solve the coupled transient thermoelastic problems of a circular
multilayered conical shell.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Truncated circular multilayered conical shells are used in various engineering applications such as
hoppers, vessel heads, components of missiles and spacecrafts, and other civil, mechanical and aerospace
engineering structures. Since the laminated circular conical structures are widely used in contemporary
industries, we must take care the thermoelasticity problems. The literature on the thermoelastic problems of
laminated circular conical shells is scarce. This is mainly due to the inherent complexity of the basic
equations in curvilinear circular conical coordinates, which is a system of nonlinear partial differential
equations.

Exact methods of solution are available in the literature for axisymmetric bending of conical shells as
reported in many textbooks, for examples, Timoshenko and Woinowsky-Krieger (1959) and Fligge (1960).
The exact solutions are based on Bessel functions, which are presented in terms of Kelvin’s or Thomson’s
functions. However Kelvin’s functions oscillate from positive to negative values with amplitudes of oscil-
lation that diverge exponentially. Jianpong and Harik (1990) presented an iterative finite difference method
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to determine the stresses and displacements of bending of axisymmetric conical shells. The method can be
applied to short and long conical shells having simply supported, clamped, or free edges and can easily be
extended to tapered conical shells and other types of axisymmetric shells.

Based on a thick shell theory, Lu et al. (1995) discussed the stress distribution of thick laminated conical
tubes under general loading. The effect of transverse shear is taken into account by a first-order theory.
Governing equations are solved by a semi-analytical method that is a combination of Fourier series
expansion, finite difference scheme and Riccati transfer matrix method. The method can be applied to the
analysis of any axisymmetric laminated tube or shell that may approximately be divided into a series of
conical shell segments. The expressions of determining the stresses, strains and displacements of a truncated
or complete thin conical shell with constant thickness and axisymmetric load distributed or concentrated
along the meridian was presented by Tavares (1996). These expressions were obtained by construction of
Green’s function for the homogeneous differential equation based on the bending theory. It is shown that a
complete cone with lateral load can be obtained as a particular case and in a second step a cone with load at
the vertex. The solution for an axisymmetric load distributed along the meridian was obtained using
superposition.

An asymptotic theory for thermoelastic analysis of doubly curved laminated shells is formulated by Wu
et al. (1996), which based on the framework of three-dimensional elasticity. The essential feature of the
theory is that an accurate elasticity solution can be determined hierarchically by solving the classical
laminated shell theory equations in a consistent way without treating the layers individually. Based on the
equations of three-dimensional elasticity, an asymptotic theory for the analysis of laminated circular
conical shells was presented by Wu and Hung (1999). By means of proper asymptotic expansion, they
obtained the recursive sets of governing equations for the bending of a laminated circular conical shell. The
differential quadrature method is used to solve the governing equations. The numerical solutions asymp-
totically approach to the three-dimensional solution. Furthermore, based on the equations of three-
dimensional elasticity in curvilinear circular conical coordinates, a refined asymptotic theory for the static
analysis of laminated circular conical shells was presented by Wu et al. (2002). Taking into account of the
effect of transverse shear deformations, they obtained the recursive sets of governing equations leading to
the ones of first-order shear deformation theory. The differential quadrature method is used to determine
the asymptotic solutions for various orders. The solutions applied to laminated shells revealed that both the
differential quadrature method and the asymptotic solution are rapidly convergent.

Based on the governing equations of three-dimensional elasticity, an asymptotic theory was presented by
Wu and Chiu (2001) for the thermoelastic buckling analysis of laminated composite conical shells subjected
to a uniform temperature change. The perturbation method is used to determine the critical thermal loads.
Performing a straightforward derivation, the asymptotic formulation leads to recursive sets of governing
equations for various orders. The critical thermal loads of simply supported, cross-ply conical shells are
studied to demonstrate the performance of the asymptotic theory. The buckling of an orthotropic com-
posite truncated conical shell with continuously varying thickness subjected to a time dependent external
pressure was discussed by Sofiyev (2003). Using the Galerkin method, the governing equations have been
reduced to time dependent differential equation with variable coefficients. Finally, applying the Ritz
method, the critical static and dynamic loads, the corresponding wave numbers and the dynamic factor
have been found analytically. It was observed that the critical parameters and static critical load have
appreciable effects on the critical parameters of the problem in the heating.

Jane and Lee (1999) considered the thermoelasticity of multilayered cylinders subjected to known
temperatures at traction-free boundaries by using the Laplace transform and the finite difference method.
The computational procedures can solve the generalized thermoelasticity problem for a multilayered
composite cylinder with non-homogeneous materials.

However, there are fewer research works about coupled thermoelastic problems of the laminated circular
conical shells, due to the difficulties in theoretical analysis and complexity of mathematics. The present
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study deals with the two-dimensional quasi-static coupled thermoelastic problems of laminated circular
conical shells composed of different multilayered materials having axis symmetry. The laminated circular
conical shell is characterized by trace free, and absence of body forces and internal heat sources. Derivatives
are approximated by central differences resulting in an algebraic representation of the partial differential
equation. By taking the Laplace transform with respect to time, the general solutions in the transform
domain are first obtained. The final solutions in the real domain can be obtained by inverting the Laplace
transform.

2. Formulation

Consider a laminated circular conical shell composed of multiple layers with different materials. A set of
the orthogonal curvilinear coordinates (7, 0, {) is located on the middle surface as shown in Fig. 1, in which
n is the meridional direction, 6 is the circumferential direction, and { is the normal direction. Let R, and R,
be the radii of the cone at the small and large edges, respectively, « be the semi-vertex angle of the cone and
L be cone length along the generator. The inner and outer temperatures are assumed to be f; and f>,
respectively. Temperatures at both ends are assumed to be f3 and f;, respectively.

The transient heat conduction equation for the kth layer of the conical shell can be written as
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"on2 " "Ry +ysino+{cosa Onp " 9> "Ry +nsina+ {coso O
] 0 [y, sin o oU, cos o
_pC”§+@O‘B”6_n<¥> +@OﬂoR1 +nsina+€cosa¥+@0‘80Rl +nsina + {cosa
U o (U
@8 — [ 2L 1
T °ﬂ¢a§<af> ()

in which ® = © — 0, and
g = (L AE,(1 — vorveo) oy + Eo(vio + veovyr)oto + Ec(Vye + vyovor) o]

By = (I/A)[EU(VW + veove)oty + Eo(1 — vyevey)otg + E¢ (v + VOWVHC)O‘C]

kth layer \4 m,X

SN

Fig. 1. Physical model and system coordinates for the circular conical shell.
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where @ is the dimensional temperature; @, is the referential temperature; k, and k; are the thermal
conductivities; 7 is the dimensional time; p is the density; C, is the specific heat; v, v,y and vy, are Poisson’s
ratio; o, oy and o, are the linear thermal expansion coefficients, E,, Ey and E; are Young’s modulus, U,, Uy
and U; are dimensional displacement components along #-, 8- and {-directions, respectively.

If the body forces are absent, the equation of equilibrium for a circular conical shell along the #-direction
can be written as
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where G, is the shear modulus. If the body forces are absent, the equation of equilibrium for a circular
conical shell along the {-direction can be written as
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The stress—displacement relations for the ith layer are
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where o}, o, and o7, are the dimensional normal stresses for the kth layer; 7, is the dimensional shear

stress for the kth layer.

Let the boundary surface of the laminated circular conical shells be subjected to constant boundary
temperatures and traction free, the boundary conditions are

O-;(’/Ia Cvf) =0 0, =
0;(11, 571) = 07 @2 -
02("1 évt) = 07 @3 -
o:(n, (1) =0, O4=
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O+ /> atn=L+R,/sina
O+ f3 at { =Ry/cosu

Oy + 14 at { = (R, — Ry)/cosu

The initial conditions are U = 0, and ® = 0 at 7 = 0.
At the interface between two adjacent layers, the interface conditions are
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k=2,3,...

,m — 1 layer

where g; is the heat flux per unit area per unit time for the kth layer.
The non-dimensional variables for the axisymmetric circular multilayered conical shells are defined as

follows:
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where x is the non-dimensional meridional direction; z is the non-dimensional normal direction; 7 is the
non-dimensional temperature; u, and u. are the non-dimensional displacement components; g, og; and o
are the non-dimensional normal stresses for the kth layer; 7., is the non-dimensional shear stress for the kth
layer.
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3. Computational procedures

By substituting the non-dimensional quantities into the governing equations (1)-(3), and stress—dis-
placement relations (4)—(7), we arrive at the following non-dimensional equations:

g O _aw 0 8 ax 01,
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Ox2 1+x—|—z§_(1+x+z)2ux—~_b2kw+l+x+z 0z +1—|—x—|—z§_(1+x+2)2u2
b4k Ou azuz oT b7k
DL T
o e e T s 0 ©)
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The non-dimensional boundary conditions can be written as
o.(x,z,t) =0, T =f1/6, at x = Xop
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By applying the central difference scheme in Egs. (8)-(10), the following discretized equations are ob-
tained:
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=
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By applying the central difference in the stress—displacement relations (11)—(14), the following discretized
equations are obtained:

o =10k Mljz%‘;w +20k 7 T ;:l;_ o +20k7 m )ZZ;/+ o + 30k uZi'jHZ;ZuZi‘/il — 40T}, (18)
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The Laplace transform of a function @(¢) and its inverse are defined by
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By taking the Laplace transform for Egs. (15)-(21), the following equations are obtained:
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By letting the boundary surface of the laminated circular conical shells be subject to constant boundary
temperatures and traction free, after taking the Laplace transform, the boundary conditions in the
transformed domain become
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Gc(x,2,5) =0, T,=f1/0, at x = Xop
6’x(X,Z,S) = 07 TZ = f2/®0 at X = Xpottom
0.(x,z,5) =0, Ts3=/13/0, at z = Zipner

6'2()(,2, S) = Oa T4 = ﬁl/@O at z = Zoyter
and the interface conditions are as follows:

ﬁk(xa S) = ﬁk+1(x75) X = (Rl/Sin a)k+1

Guc(X,8) = Oyes1(x,8)  x = (Ry/sina),

@(X, s) = Z]_k+1(x7s) x=(R/sina), .,
Ti(x,s) = Tgpa(x,5)  x = (Ry/sina),,

k=23,...,m—1 layer

By using boundary conditions and interface conditions in Egs. (22)—(24), the following equation in
matrix form is obtained:

{M] = sUITHT ) + siMa{izy } + s[Ms]{a; ) = é [M,] (29)
[Ms|{T;} + [Me]{tty;} + [M7){z1} = 0 (30)
[Ms{T;} + [Mo]{tiy;} + [Mio[{it;} = O (31)

where the matrices [M]] to [M] are given in Appendix A.
By solving Egs. (30) and (31), #,; and u.; can be obtained as

{1} = ([Myo] — [Mo][Me] ™ [M5]) ™" ([Mo][Me] ™' [M5] — [Ms]){T;} (32)
{7} = ([Ms] — [Muo][M5] ™" [M]) ™" ((Mio] [M7] ™' [M5] — [Ms]){T} (33)
By substituting Egs. (32) and (33) into Eq. (29), one has
{M] = s[IHTy;} = {By} (34)
in which

[M] = {[1) — [Ma]([My] — [Muo][M) ™ [Ms]) ™" ([Mao] [M7) ™ [M5] — [Ms])
— [Ms]([Myo] — [Mo] (M)~ [M7]) ™ (IMo] [Me] ™" [Ms] — [Ms])} ™ [M1]
and
{By} = {[1] — [Ma)([Mo] — [Myo][M5] ™" [Mg]) ™" ([Muo] (M)~ [Ms] — [Ms])
— [Ms]([Myg] — [Mo][Me] ™' [M7]) ™ (IMo][Me] ™' [Ms] — [Ms})}flé[Md

Since the (N? x N?) matrix [M] is a non-singular real matrix, matrix [M] possesses a set of N? linearly
independent eigenvectors, hence matrix [M] is diagonalizable. There exists a non-singular transition matrix
[P] such that [P]"'[M][P] = diag[M], that is, matrices [M] and diag[M] are similar, where matrix diag[M] is
defined as

A
. Z8)
diag[M] = : (35)
;LNZ

in which 4; (j =1,2,...,N?) is the eigenvalue of matrix [M].
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Table 1
Geometry and material constants of a laminated circular conical shell (zouter/Zinner = 1.7, L = 4.5, « = 1/6)
Layer 1 Layer 2 Layer 3
E,=Ey=E; S0E6 S58E6 S0E6
ky = ko = ke 18 22 18
Oy = g = 0 4E-6 4E-6 4E-6
Voo = Voy 0.2 0.3 0.2
Vo = Vo 0.3 0.2 0.1
Veo = Vor 0.15 0.15 0.15
Gy 15E6 18E6 15E6
p 0.095 0.095 0.095
C, 0.3 0.3 0.3
Table 2

The temperature under different times and different number of gird points of finite difference method at x = 3.15, z = 1.55

Girds=36 (N =6)  Girds=64 (N =8)

Girds =100 (N = 10)

Girds = 144 (N = 12)

Girds =196 (N = 14)

Time =0.1
Time=0.5
Time=1.0
Time =2.0
Time=3.0
Time =4.0
Time=5.0

44.579
53.052
54.603
56.073
56.114
56.115
56.115

45.581
55.491
57.490
58.590
58.947
58.948
58.948

46.147
57.028
59.007
60.890
60.944
60.946
60.946

46.233
57.131
59.112
60.999
61.053
61.055
61.055

46.238
57.137
59.118
61.014
61.056
61.058
61.058

temperature

temperature

Fig. 2.

Temperature distribution along z- and x-directions: (a) t = 0.1, (b) ¢t = 5.
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By substituting Eq. (35) into (34), the following matrix equation is obtained:

(36)

*
lj}

}={B

*
i

{diag[M] — s[I]}{T,

where

= [P]7{B;}
The following solutions are obtained immediately from Eq. (36):

-
lj}

=[P ""{T;} and {B

"
lj}

(T

(37)

=B/(3;~s)

*
ij

T

the equations can be obtained as following:

>

By substituting Eq. (37) into (32) and (33)

(38)

/(%= 5)

*
Yy

(39)

=D,/(4 —s)

—%
zij

u

where

1P {i }

{a;ij}

JuowsorTdsTP - Z

(a)

o
7
.
Wi
i
7
\\\\\\\ \\\\\\\\\\\\\\\\@m@

W,

i

i
ity

I
7
i
i
i
iy
il
il

Uy
Uyl
7
Uittty
iw#m\

JusweorTdsSTP ~- Z

Fig. 3. Displacement component u, along z- and x-directions: (a) t = 0.1 (b) = 5.



217
(40)
(42)

(41)

;; and u;; can be obtained.

*
X g

u

x
ij>

"By}

the solutions for
the temperature distribution 7;;, the displacements

>

>

5] — M) [P) ' {B}

(39)

into the following relations

| = [Ms))[P]

5

[
I

7

o

[

Il
]

10

i

-

]

*
zij

and u
uy; and u; can be obtained as:
it
X
xij}
;
zij}

i
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[P{u

[P ity }

u

([Mo] — [Mo][Mg] ' [M)) ™" ([Mo

([Mo] — [Mio] [M7] " [Ms

By taking the inverse Laplace transform on Egs. (37)

[Pl{u
Therefore, by substituting 7};, u.;;, and u,; into Eqs. (18)—(21), the x-direction stress oy, the circumferential

stress oy, z-direction stress o., and the shear stress t,. can all be obtained.

[PI{

{4}
{D,}

{u,}
{ux,-,-}
{uis}

Substituting

%
M&“&““\\\\ &
I by il M
Uity i iy ,
i oty & LM I &
N il Ly
il g il o A
gty g gy / i gt tag Ry
ity Ot gy trgdeay
i\\\\\\\\\§s:s.......n..... s\\\\ss\\s%a.5............. hy
ilitylyligfoigttgdtued Uillifiniiggtiotave
yliflltiltegtngatey oy
T ey T HI P
iditrgttogetty Uyl aatteg
iyt il ol eageagy
it il ineg eyl A
DL iyt teglcoug oy o
¢ i ¢
o it g gy 0y VA
y Uittt g gy Saay St
4 Uyl gy gy gy KT
y iyl g teng %bepy el
v Uit g gy
ity gy oy
QA
T30 [ &
i
s
il
Uy o
e
JuowsorTdsTIP - X @ JusweorTdSTD ~- X M

Fig. 4. Displacement component u, along z- and x-directions: (a) t = 0.1, (b) t = 5.
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of the time, the locations of the points of maximum displacement move to the inner lateral surface of the
laminated circular conical shells. It is noted that the displacement in z-direction has negative values, which
is due to the thermal expansion and the choice of coordinates (u, = 0 at x = x,0p). For a large ¢, say, t = 5,
the larger negative value of u, is obtained as would be expected. Fig. 4(a) and (b) show the x-direction
displacement varying in the z- and x-directions of the laminated circular conical shells at = 0.1 and 5,
respectively. The locations of the points of maximum x-direction displacement u, along the z-direction
occur at the center. Due to the difference between the top and bottom temperatures, the x-direction dis-
placement u, is increasing from the top end to the bottom end. It is noted that the displacement in x-
direction has negative values, which is due to the thermal expansion and the coordinates is chosen as u, = 0
in the midplane.

Fig. 5(a) and (b) show the thermal stress distribution o, along the z- and x-directions at t = 0.1 and ¢ = 5,
respectively. From these figures, the locations of the points of maximum stress ¢, occur at the inner surfaces
(at z=1). The larger the surrounding temperatures will have the greater the thermal stress g,. As time
increases to 5, the thermal stress arrives at its steady state value, which is greater than its transient state
value as shown in Fig. 5.
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Fig. 7. Circumferential stress along z- and x-directions at x = 4.33: (a) t = 0.1, (b) t = 5.
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XZ - shear stress

XZ - shear stress
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Fig. 9. Shear stress distribution 7, along z- and x-directions: (a) t = 0.1, (b) ¢ = 5.

5. Conclusions

In this paper, the thermoelastic transient response of the laminated circular conical shell has been
analyzed. The thermoelastic problem of circular conical shell composed of multilayer of different mate-
rials has also been discussed. The finite difference and the Laplace transform methods were employed to
obtain the numerical results. Application of the present method to laminated circular conical shells re-
veals that the present method is rapidly convergent, we chose gird points =196 (N = 14) to evaluate the
temperature distribution, displacement and thermal stresses in a laminated circular conical shell for small
time ¢ = 0.1, which is in transient state, and large time ¢ = 5.0, which approaches the steady state.
Temperature, displacement and thermal stress distributions were obtained which can be applied to design
useful structures or machines in engineering applications. There is no limit to the number of layers in
such a circular conical shell. The discontinuity of circumferential stress at the interfaces was found. It was
found that the temperature distribution, the displacement and the thermal stresses vary slightly as time
intervals increase.

Appendix A

The matrices [M,] to [M)] are given as follows:
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The matrix [M]
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= |1 | A T oA T 720
c [-&-617141,1} [Ax2+2Axl+xl‘,1+Zz,1

a2_:1+jg]’z: [asc  auw
a3_1+%:1_a3k o

N+2 -

d4

1

1

1

1
20z 1+x1,+21,

1

1

d3

c4

2Ax 1+ xy; + 2y,

d4
b3

(,’3

a2

b2
h4

a4

d2
b4

c4

], b——{l+a71

], d= [1—5-&171

}, ad =

3N

ad
a3

d4

d4

d3 b3

c4
3

5Py

4Py

}, b2_b3——{l+

[y
], dz_{H]Qk]
_ sOc |
], 63[1+1QJ

asi A4

»
4Py

Jane, Y.H. Wu | International Journal of Solids and Structures 41 (2004) 2205-2233

a2
a4
a4
a3
b2 d2 a2
h4 b4 d4
. d4
d3 b3
bl al
dl
bl

!
1

10k

au o 1
Ax?  2Ax 14 x4z

Jow a1
Az? 2Az 1 + XN j + ZINj

ol &

2ay1  2a3
{szmzz]

ai as)

2a3k

A A2

2573 1

(2273 1

1

A2 " 2Az T+ x,;+z,

|

a4

cl

1

|

|

|

a4

dl

2223

a3

cl
al




2224 K.C. Jane, Y.H. Wu | International Journal of Solids and Structures 41 (2004) 2205-2233
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h4Z;"22“2’;HxlﬂLZ/ a1{1+a7m‘5‘§ﬂl{za“”+
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where N is the mesh number; m is the last layer; £k = 2,3,.

The matrix [M>]
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=— |1+ am—0 Lt it | St ———————
@0{ 74P,,J [(sz 2Ax 1+ xyy + 2y S\ a2 2Az 1+ xyy + 2w,
12 .. .. N N+1 N+2 ... - 2N - 3N
b5 a5
¢5 . as
.oas
e5
. as
c5 ' as
as
5
.as
s as
.oad
5
.as
5 as
. a5
5
c5
—b —b b
S obS=——— 5=
2Ax 1 +x,~d~ +Zi,j 2Ax

Ay 1

E 1 +X1_N +ZI,N
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The matrix [Mg]

1 2 «+ -« N N+1 N+2 2N

1 [f5 kS s is
2 j5 k5 ’

: h5 i5
N Jjs k5

N+1| g5 mS hS
N+2|ns js5 '

: m5 . kS
2N ns 5

: . ms

ns ’

: m5
3N ns
NZ

where
5 1 by 5_ —bs;
7T s 10T 2
+ X+ zij (I +xi;+zy)
ps—— L be s b
1 +x;,+z,; 2Ax’ 4AxAz’

kS

5

n5

3N
i5
.5
ks
s s
. . PP
h5
s
mS5 S
. . s
. mS
ns
mS
ns
-1 by

I —.—
1 —i—x,"/- +Zi,j 2Az

—1 ba
1 —l—x,«?j +Z,‘_’]‘ 2Ax,

kS

Jjs

nS

h5

g5

k5

hS
s

Jjs

h5
/5
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The matrix [M;]

1 2 .. ... N N+41 N+2 v v 2N oo vvv vvv v 3N cov cit cit ie ei eee aee aee oo N2
1 pS 45 r5
2 |ss T
q5
N s5 .
N+1|us g5
N+2 55 i
q5
2N 55
. 45
s5
q5
3N 55
. . 45
5
g5
s5 . r5
. 45
5
q5
N? us sS b5
where
2 by bu 1 1 1

5:__—_—, 5:—7_’__
PoaT A (haytz)y T A Thx, vz, A2

b 1 by -1 1 1

S i o Tag
" 2AZ l er,-,j+z,47j A227 s 2A)C 1 +x,-7j+Zi,j+Ax2
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b 1
2AZ 1+xiJ'+ZLj AZZ

us

The matrix [Ms]

1 2 «« -« N N+1 N+2 -« - 2N

N+1]| c6
N+2

3N

N2

where

C8k —Cok C8k
ab = — 6=——

ZAZ7 :1+X[,j+Z,'J7 2Az

3N

c6

ab

b6
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The matrix [Ms)

1 2 ... ... N N+1 N4+2 v oo 2N «vv wvv vov von BN wi oit iet ee we iee wee aa ... N2
1 f6 k6 6
> e
16
N j6
N+1] g6 h6
N+2 Jj6 ’
: h6
2N j6
: h6
i
: ) . h6
3N j6
: "6
j6
h6 .
j6 . 6
' h6
j6
: . . . h6
N? 26 j6  f6
where
P S - S S . S S
202 1+ x4z AZ A AZ (1 +4x;+z,)
7_03/( 1 Cok - 1 1 4 1
o ZAZ 1+xi7j+zl'yj A227 _2Ax 1 +xi<j +Zi,j sz
-1 1 1
j6

:ﬁx 1 +xi7j+zi,j+g
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The matrix [M)

12 N N+1 N+2 2N
1 p6  ¢6 r6 i6
2 6 k6 '
46 i6
N s6 k6
N+ ub mb g6
N+2|n6 ° 56 ’ k6
mb q6
2N n6 s6
: m6
n6é ' 56
mbé
3N n6
: n6
N
where
Ck —Ck
i6 =n6 = k6 = mb6 = =
4AxAz’ 4AxAz’
1 Cay -1 Cok
wh=——— s6=———
l+xiﬁj+z,-,j ZAZ 1+X[7j +Z,'J' ZA.X
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